Numerical Solutions of Third-Order Time-Fractional Differential Equations Using Cubic B-Spline Functions

نویسندگان

چکیده

Numerous fields, including the physical sciences, social and earth benefit greatly from application of fractional calculus (FC). The fractional-order derivative is developed integer-order derivative, in recent years, real-world modeling has performed better using derivative. Due to flexibility B-spline functions their capability for very accurate estimation equations, they have been employed as a solution interpolating polynomials partial differential equations (FPDEs). In this study, cubic (CBS) basis with new approximations are utilized numerical third-order equation. Initially, CBS finite difference scheme applied discretize spatial Caputo time derivatives, respectively. convergent numerically theoretically well being unconditionally stable. On variety problems, validity proposed technique assessed, results contrasted those reported literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of fractional partial differential equations using cubic B-spline wavelet collocation method

Physical processes with memory and hereditary properties can be best described by fractional differential equations based on the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional partial differential equations using cubi...

متن کامل

Fractional Order Numerical Differentiation with B-spline Functions

Smoothing noisy data with spline functions is well known in approximation theory. Smoothing splines have been used to deal with the problem of numerical differentiation. In this paper, we extend this method to estimate the fractional derivatives of a smooth signal from its discrete noisy data. We begin with finding a smoothing spline by solving the Tikhonov regularization problem. Then, we prop...

متن کامل

Numerical Solution of Fractional Integro-differential Equation by Using Cubic B-spline Wavelets

A numerical scheme, based on the cubic B-spline wavelets for solving fractional integro-differential equations is presented. The fractional derivative of these wavelets are utilized to reduce the fractional integro-differential equation to system of algebraic equations. Numerical examples are provided to demonstrate the accuracy and efficiency and simplicity of the method.

متن کامل

Solving Linear and Nonlinear Fractional Differential Equations Using Spline Functions

and Applied Analysis 3 Ramadan introduced in 19 the solution of the first-order delay differential equation of the form: y′ x f ( x, y x , y ( g x )) , a ≤ x ≤ b, y a y0, y x Φ x , x ∈ a∗, a , a∗ < 0, a∗ inf { g x : x ∈ a, b , 2.4 using the spline functions of the polynomial form, defined as SΔ x Sk x Sk−1 xk r ∑ i 0 M i k x − xk i 1 i 1 ! , 2.5 where M i k f i xk, Sk−1 xk , Sk−1 g xk , with S−...

متن کامل

Numerical Solution of System of Fractional Delay Differential Equations Using Polynomial Spline Functions

The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2022

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract6090528